Infrared and reflectron time-of-flight mass spectroscopic study on the synthesis of glycolaldehyde in methanol (CH3OH) and methanol-carbon monoxide (CH3OH-CO) ices exposed to ionization radiation.

نویسندگان

  • Surajit Maity
  • Ralf I Kaiser
  • Brant M Jones
چکیده

We present conclusive evidence on the formation of glycolaldehyde (HOCH2CHO) synthesized within astrophysically relevant ices of methanol (CH3OH) and methanol-carbon monoxide (CH3OH-CO) upon exposure to ionizing radiation at 5.5 K. The radiation induced chemical processes of the ices were monitored on line and in situ via infrared spectroscopy which was complimented by temperature programmed desorption studies post irradiation, utilizing highly sensitive reflectron time-of-flight mass spectrometry coupled with single photon fragment free photoionization (ReTOF-PI) at 10.49 eV. Specifically, glycolaldehyde was observed via the v14 band and further enhanced with the associated frequency shifts of the carbonyl stretching mode observed in irradiated isotopologue ice mixtures. Furthermore, experiments conducted with mixed isotopic ices of methanol-carbon monoxide (13CH3OH-CO, CH3(18)OH-CO, CD3OD-13CO and CH3OH-C18O) provide solid evidence of at least three competing reaction pathways involved in the formation of glycolaldehyde via non-equilibrium chemistry, which were identified as follows: (i) radical-radical recombination of HCO and CH2OH formed via decomposition of methanol--the "two methanol pathway"; (ii) via the reaction of one methanol unit (CH2OH from the decomposition of CH3OH) with one carbon monoxide unit (HCO from the hydrogenation of CO)--the "one methanol, one carbon monoxide pathway"; and (iii) formation via hydrogenation of carbon monoxide resulting in radicals of HCO and CH2OH--the "two carbon monoxide pathway". In addition, temperature programmed desorption studies revealed an increase in the amount of glycolaldehyde formed, suggesting further thermal chemistry of trapped radicals within the ice matrix. Sublimation of glycolaldehyde during the warm up was also monitored via ReTOF-PI and validated via the mutual agreement of the associated isotopic frequency shifts within the infrared band positions and the identical sublimation profiles obtained from the ReTOF spectra and infrared spectroscopy of the corresponding isotopes. In addition, an isomer of glycolaldehyde (ethene-1,2-diol) was tentatively assigned. Confirmation of the identified pathways based on infrared spectroscopy was also obtained from the observed ion signals corresponding to isotopomers of glycolaldehyde. These coupled techniques provide clear, concise evidence of the formation of a complex and astrobiologically important organic, glycolaldehyde, relevant to the icy mantles observed in the interstellar medium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Formation of Glycolaldehyde (hcoch2oh) and Methyl Formate (hcooch3) in Interstellar Ice Analogs

Binary mixtures of methanol (CH3OH) and carbon monoxide (CO) ices were irradiated at 10 K with energetic electrons to mimic the energy transfer processes that occur in the track of the trajectories of MeV cosmic-ray particles. The formation of glycolaldehyde (HCOCH2OH) was established through the appearance of new bands in the infrared spectrum at 1757, 1700, 1690, 1367, 1267, and 1067 cm . A s...

متن کامل

ON THE FORMATION AND ISOMER SPECIFICDETECTION OF PROPENAL (C2H3CHO) AND CYCLOPROPANONE (c-C3H4O) IN INTERSTELLAR MODEL ICES—A COMBINED FTIR AND REFLECTRON TIME-OF-FLIGHT MASS SPECTROSCOPIC STUDY

The formation routes of two structural isomers—propenal (C2H3CHO) and cyclopropanone (c-C3H4O)—were investigated experimentally by exposing ices of astrophysical interest to energetic electrons at 5.5 K thus mimicking the interaction of ionizing radiation with interstellar ices in cold molecular clouds. The radiationinduced processing of these ices was monitored online and in situ via Fourier T...

متن کامل

Mechanistical Studies on the Irradiation of Methanol in Extraterrestrial Ices

Pure ices of amorphous methanol, CH3OH(X 1A0), were irradiated at 11 K by 5 keVelectrons at 100 nA for 1 hr. These energetic electrons simulate electronic energy transfer processes that occur as interstellar ices, comets, and icy solar system bodies are subjected to irradiation fromMeV ions and secondary electrons produced in this process. The results were analyzed quantitatively via absorption...

متن کامل

Laboratory Studies of the Formation of Methanol and Other OrganicMolecules by Water+Carbon Monoxide Radiolysis: Relevanceto Comets, Icy Satellites, and Interstellar Ices

Radiation processing of cometary, planetary, and interstellar ices has been investigated by irradiating mixtures of H2O and CO near 16 K with 0.8-MeV protons. IR spectroscopy and isotopic substitution showed that H and OH, from H2O, added to CO to form HCO, H2CO, HCOOH, and CH3OH. A values (integrated spectral absorbances) for HCOOH and HCO trapped in H2O ice were measured for the first time. T...

متن کامل

Multi-walled carbon nanotubes supported palladium nanoparticles: Synthesis, characterization and catalytic activity towards methanol electro oxidation in alkaline media

Palladium nanoparticles supported on multi-walled carbon nanotubes (Pd/MWCNTs) have been synthesized using a modified polyol reduction method and its performance in methanol oxidation reactions has evaluated. The morphology of palladium on MWCNTs was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The catalytic performance of synthesized catalyst ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Faraday discussions

دوره 168  شماره 

صفحات  -

تاریخ انتشار 2014